943 resultados para PATHOGENIC PROTOZOAN PARASITES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Significant advances have been made in our understanding of heat shock protein 90 (Hsp90) in terms of its structure, biochemical characteristics, post-translational modifications, interactomes, regulation and functions. In addition to yeast as a model several new systems have now been examined including flies, worms, plants as well as mammalian cells. This review discusses themes emerging out of studies reported on Hsp90 from infectious disease causing protozoa. A common theme of sensing and responding to host cell microenvironment emerges out of analysis of Hsp90 in Malaria, Trypanosmiasis as well as Leishmaniasis. In addition to their functional roles, the potential of Hsp90 from these infectious disease causing organisms to serve as drug targets and the current status of this drug development endeavor are discussed. Finally, a unique and the only known example of a split Hsp90 gene from another disease causing protozoan Giardia lamblia and its evolutionary significance are discussed. Clearly studies on Hsp90 from protozoan parasites promise to reveal important new paradigms in Hsp90 biology while exploring its potential as an anti-infective drug target. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90). (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presence of fungi on the phytoplankton of Lake Windermere was first noted by the author in 1943. Surveys into the fungal and protozoan parasites of the planktonic algae of the English Lake District and elsewhere were carried out. This article discusses the descriptive studies, epidemics and culture work, which was carried out in connection with these studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigou-se a relação entre as características da água e a infestação de protozoários parasitos, Icthyophthirius multifiliis e Trichodina sp., em peixe espada, Xiphophorus helleri e em plati, Xiphophorus maculatus, coletados em uma piscicultura de peixes ornamentais no Estado de São Paulo, Brasil. Os peixes foram coletados mensalmente, durante um ano, dos viveiros e das caixas de estocagem. A prevalência da infestação nos peixes das caixas e dos viveiros foram, respectivamente, 34,2% e 22,5% para I. multifiliis e 13% e 54% para Trichodina sp. A elevada condutividade elétrica e o pH da água reduziram a infestação por I. multifiliis. A baixa concentração de oxigênio resultou em aumento na infestação por Trichodina sp. O uso do sal, para aumentar a condutividade elétrica da água, consistiu em um método de controle de I. multifiliis. A redução do oxigênio dissolvido e a adição de fertilizante orgânico favoreceram a reprodução de Trichodina sp.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate the occurrence of potentially zoonotic intestinal protozoan infections in exotic and wildlife Brazilian birds. Fecal samples from 207 birds of 45 species were examined. Infections by Balantidium sp., Entamoeba sp., and Blastocystis sp. were observed in 17 individuals (8.2%) of Gnorimopsar chopi, Oryzoborus angolensis, Sporophila caerulescens, Ramphastos toco, Aratinga leucophtalmus, and Pavo cristatus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigou-se a relação entre as características da água e a infestação de protozoários parasitos, Icthyophthirius multifiliis e Trichodina sp., em peixe espada, Xiphophorus helleri e em plati, Xiphophorus maculatus, coletados em uma piscicultura de peixes ornamentais no Estado de São Paulo, Brasil. Os peixes foram coletados mensalmente, durante um ano, dos viveiros e das caixas de estocagem. A prevalência da infestação nos peixes das caixas e dos viveiros foram, respectivamente, 34,2% e 22,5% para I. multifiliis e 13% e 54% para Trichodina sp. A elevada condutividade elétrica e o pH da água reduziram a infestação por I. multifiliis. A baixa concentração de oxigênio resultou em aumento na infestação por Trichodina sp. O uso do sal, para aumentar a condutividade elétrica da água, consistiu em um método de controle de I. multifiliis. A redução do oxigênio dissolvido e a adição de fertilizante orgânico favoreceram a reprodução de Trichodina sp.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different types of shed vesicles as, for example, exosomes, plasma-membrane-derived vesicles or microparticles, are the focus of intense research in view of their potential role in cell cell communication and under the perspective that they might be good tools for immunotherapy, vaccination or diagnostic purposes. This review discusses ways employed by pathogenic trypanosomatids to interact with the host by shedding vesicles that contain molecules important for the establishment of infection, as opposed to previous beliefs considering them as a waste of cellular metabolism. Trypanosomatids are compared with Apicomplexa, which circulate parasite antigens bound to vesicles shed by host cells. The knowledge of the origin and chemical composition of these different vesicles might lead to the understanding of the mechanisms that determine their biological function. (C) 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The immune response expressed by IgG antibodies in BALB/c mice experimentally infected with Toxocara canis, was studied with the aim of verifying the possible in vivo cross-reactivity between antigens of T. canis and other parasites (Ascaris suum, Taenia crassiceps, Schistosoma mansoni, Strongyloides venezuelensis and Toxoplasma gondii). Experiments included three groups of mice: one infected only by T. canis, another with one of the other species of parasites and a third concomitantly infected with T. canis and the other species in question. Animals were bled by orbital plexus at 23, 38 and 70 days post infection (p.i.). Sera were analyzed for anti-Toxocara antibodies by ELISA and Immunoblotting, using excretion-secretion antigens (ES), obtained from culture of third-stage larvae of T. canis. For all experiments a control group comprised by ten non-infected mice was used. Only in the case of A. suum infection, in these experimental conditions, the occurrence of cross-reactivity with T. canis was observed. However, in the case of co-infection of T. canis - S. mansoni, T. canis - S. venezuelensis and T. canis - T. crassiceps the production of anti-Toxocara antibodies was found at levels significantly lower than those found in mice infected with T. canis only. Co-infection with S. mansoni or S. venezuelensis showed lower mortality rates compared to what occurred in the animals with single infections. Results obtained in mice infected with T. canis and T. gondii showed significant differences between the mean levels of the optical densities of animals infected with T. canis and concomitantly infected with the protozoan only in the 23rd day p.i.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cupiennin 1a, a cytolytic peptide isolated from the venom of the spider Cupiennius salei, exhibits broad membranolytic activity towards bacteria, trypanosomes, and plasmodia, as well as human blood and cancer cells. In analysing the cytolytic activity of synthesised all-d- and all-l-cupiennin 1a towards pro- and eukaryotic cells, a stereospecific mode of membrane destruction could be excluded. The importance of negatively charged sialic acids on the outer leaflet of erythrocytes for the binding and haemolytic activity of l-cupiennin 1a was demonstrated. Reducing the overall negative charges of erythrocytes by partially removing their sialic acids or by protecting them with tri- or pentalysine results in reduced haemolytic activity of the peptide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing demand for novel anti-parasitic drugs due to resistance formation to well-established chemotherapeutically important compounds has increased the demands for a better understanding of the mechanism(s) of action of existing drugs and of drugs in development. While different approaches have been developed to identify the targets and thus mode of action of anti-parasitic compounds, it has become clear that many drugs act not only on one, but possibly several parasite molecules or even pathways. Ideally, these targets are not present in any cells of the host. In the case of apicomplexan parasites, the unique apicoplast, provides a suitable target for compounds binding to DNA or ribosomal RNA of prokaryotic origin. In the case of intracellular pathogens, a given drug might not only affect the pathogen by directly acting on parasite-associated targets, but also indirectly, by altering the host cell physiology. This in turn could affect the parasite development and lead to parasite death. In this review, we provide an overview of strategies for target identification, and present examples of selected drug targets, ranging from proteins to nucleic acids to intermediary metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The protozoan parasite Neospora caninum is one of the most important abortifacient organisms in cattle worldwide. The dog is known to act as definitive host although its potential role as infection source for bovines still remains unelucidated. The aim of the present study was to compile initial epidemiological data on the prevalence and incidence of N. caninum in Swiss dogs acting as definitive hosts. Thus, 249 Swiss dogs were investigated coproscopically in monthly intervals over a period of 1 year. A total of 3289 fecal samples was tested by the flotation technique. Among these, 202 were shown to contain Sarcocystis sp. (6.1%), 149 Cystoisospora sp. (=Isospora sp.; 4.5%) and 25 Hammondia/Neospora-like oocysts (HNlO) (0.7%). All but one sample containing HNlO were from different dogs; one dog shed HNlO at two subsequent time points. Calculation of the yearly incidence for HNlO resulted in the surprisingly high value of 9.2%. Farm dogs exhibited a higher incidence for HNlO than urban family dogs. Thirteen out of the 25 HNlO-samples showed sporulation after 5 days incubation at room temperature. HNlO were further differentiated by species-specific PCR. However, all HNlO-samples were negative for N. caninum, Hammondia heydorni and Toxoplasma gondii. One reason may be the low oocyst density found in most fecal samples, which did not permit us to carry out PCR under optimal conditions. Three out of the 25 HNlO-cases contained enough oocysts to allow further enrichment and purification by the flotation technique. Subsequently, twenty to fifty sporulated HNlO-oocysts were orally administered to Meriones unguiculatus. All gerbils were seronegative for N. caninum at 5 weeks p.i. A N. caninum-seroprevalence of 7.8% was determined by ELISA upon 1132 serum samples collected from dogs randomly selected by veterinarians among their clinical patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipid metabolism is of crucial importance for pathogens. Lipids serve as cellular building blocks, signalling molecules, energy stores, posttranslational modifiers, and pathogenesis factors. Parasites rely on a complex system of uptake and synthesis mechanisms to satisfy their lipid needs. The parameters of this system change dramatically as the parasite transits through the various stages of its life cycle. Here we discuss the tremendous recent advances that have been made in the understanding of the synthesis and uptake pathways for fatty acids and phospholipids in apicomplexan and kinetoplastid parasites, including Plasmodium, Toxoplasma, Cryptosporidium, Trypanosoma and Leishmania. Lipid synthesis differs in significant ways between parasites from both phyla and the human host. Parasites have acquired novel pathways through endosymbiosis, as in the case of the apicoplast, have dramatically reshaped substrate and product profiles, and have evolved specialized lipids to interact with or manipulate the host. These differences potentially provide opportunities for drug development. We outline the lipid pathways for key species in detail as they progress through the developmental cycle and highlight those that are of particular importance to the biology of the pathogens and/or are the most promising targets for parasite-specific treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thiazolide nitazoxanide (2-acetolyloxy-N-(5-nitro 2-thiazolyl) benzamide; NTZ) is composed of a nitrothiazole- ring and a salicylic acid moiety, which are linked together through an amide bond. NTZ exhibits a broad spectrum of activities against a wide range of helminths, protozoa, enteric bacteria, and viruses infecting animals and humans. Since the first synthesis of the drug, a number of derivatives of NTZ have been produced, which are collectively named thiazolides. These are modified versions of NTZ, which include the replacement of the nitro group with bromo-, chloro-, or other functional groups, and the differential positioning of methyl- and methoxy-groups on the salicylate ring. The presence of a nitro group seems to be the prerequisite for activities against anaerobic or microaerophilic parasites and bacteria. Intracellular parasites and viruses, however, are susceptible to non-nitro-thiazolides with equal or higher effectiveness. Moreover, nitro- and bromo-thiazolides are effective against proliferating mammalian cells. Biochemical and genetic approaches have allowed the identification of respective targets and the molecular basis of resistance formation. Collectively, these studies strongly suggest that NTZ and other thiazolides exhibit multiple mechanisms of action. In microaerophilic bacteria and parasites, the reduction of the nitro group into a toxic intermediate turns out to be the key factor. In proliferating mammalian cells, however, bromo- and nitro-thiazolides trigger apoptosis, which may also explain their activities against intracellular pathogens. The mode of action against helminths may be similar to mammalian cells but has still not been elucidated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protozoan parasites which reside inside a host cell avoid direct destruction by the immune system of the host. The infected cell, however, still has the capacity to counteract the invasive pathogen by initiating its own death, a process which is called programmed cell death or apoptosis. Apoptotic cells are recognised and phagocytosed by macrophages and the parasite is potentially eliminated together with the infected cell. This potent defence mechanism of the host cell puts strong selective pressure on the parasites which have, in turn, evolved strategies to modulate the apoptotic program of the host cell to their favour. Within the last decade, the existence of cellular signalling pathways which inhibit the apoptotic machinery has been demonstrated. It is not surprising that intracellular pathogens subvert these pathways to ensure their own survival in the infected cell. Molecular mechanisms which interfere with apoptotic pathways have been studied extensively for viruses and parasitic bacteria, but protozoan parasites have come into focus only recently. Intracellular protozoan parasites which have been reported to inhibit the apoptotic program of the host cell, are Toxoplasma gondii, Trypanosoma cruzi, Leishmania sp., Theileria sp., Cryptosporidium parvum, and the microsporidian Nosema algerae. Although these parasites differ in their mechanism of host cell entry and in their final intracellular localisation, they might activate similar pathways in their host cells to inhibit apoptosis. In this respect, two families of molecules, which are known for their capacity to interrupt the apoptotic program, are currently discussed in the literature. First, the expression of heat shock proteins is often induced upon parasite infection and can directly interfere with molecules of the cellular death machinery. Secondly, a more indirect effect is attributed to the parasite-dependent activation of NF-kappaB, a transcription factor that regulates the transcription of anti-apoptotic molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigou-se a relação entre as características da água e a infestação de protozoários parasitos, Icthyophthirius multifiliis e Trichodina sp., em peixe espada, Xiphophorus helleri e em plati, Xiphophorus maculatus, coletados em uma piscicultura de peixes ornamentais no Estado de São Paulo, Brasil. Os peixes foram coletados mensalmente, durante um ano, dos viveiros e das caixas de estocagem. A prevalência da infestação nos peixes das caixas e dos viveiros foram, respectivamente, 34,2% e 22,5% para I. multifiliis e 13% e 54% para Trichodina sp. A elevada condutividade elétrica e o pH da água reduziram a infestação por I. multifiliis. A baixa concentração de oxigênio resultou em aumento na infestação por Trichodina sp. O uso do sal, para aumentar a condutividade elétrica da água, consistiu em um método de controle de I. multifiliis. A redução do oxigênio dissolvido e a adição de fertilizante orgânico favoreceram a reprodução de Trichodina sp.